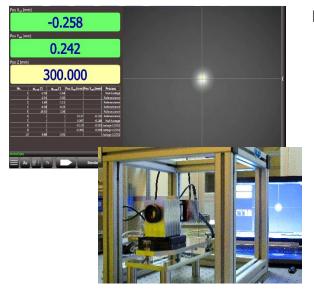

OPTIK · MESS - UND PRÜFTECHNIK VERTRIEB · BERATUNG · TRAINING

ELWIMAT®-VFS 4000

Strahllage in Position und Richtung präzise justieren

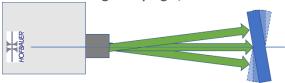

Laser- und Instrumentenbau jetzt leicht gemacht

Der ELWIMAT®-VFS nach dem "Vignettierenden Feldblendenverfahren" ist ein kompaktes Messsystem mit patentiertem Verfahren zur Winkel- und Positionsmessung. Die optoelektronische Auswertung zusammen mit entsprechenden optischen Reflektoren ermöglicht es, die Messung von Winkeln im Winkelsekundenbereich und die lateralen Positionsabweichungen im µm-Bereich quasi gleichzeitig in einem Messaufbau zu bestimmen.

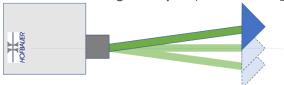
Eigenschaften/ Vorteile

- Absolut neues Messprinzip zur gleichzeitigen 4 DoF-Messung
- Winkelmessung in 2 Dimensionen < 1 Wsec
- Positionsmessung in 2 Dimensionen < 1 μm
- Praktisch keine Einschränkung in Messbereich und Arbeitsabstand
- Intuitiv bedienbare Software unter WINDOWS oder LINUX
- Echtzeitfähig mit Hardware-Trigger-Option
- Einbindung in bestehende Mess-Architekturen/ Messanlagen durch IP-Schnittstelle
- Vorbereitet für Industrie 4.0 Einsatz

Einsatzgebiete


- Aufbau und Justage optischer Achsen
- Justage opto-mechanischer Komponenten
- Spiegel, Strahlteiler, Prismen und Linsen justieren
- Justage an Mikroskopen und Opto-Baugruppen
- Montage und Justage von Laserspiegeln
- Winkelmessung an optischen und mechanische Baugruppen
- Vorjustage/ Justage von Laserresonatoren
- Passive Justage von Laserresonatoren
- Justage von Laseranlagen

OPTIK · MESS- UND PRÜFTECHNIK VERTRIEB · BERATUNG · TRAINING



Applikationen zur Justage von optischen Achsen

1. Winkelmessung am Spiegel/Strahlteiler

2.Positionsmessung mit Tripel optische Messung der Linsenaufnahme

3.Optische Achse einer Linse in Transmission

Bild: Winkelmessung mit Planspiegel + Toleranzkreis

Bild: Positionsmessung mit Tripelreflektor oder Linse

Toleranzfelder mit Farbumschlag

Toleranzfelder (Kreis, Quadrat, Rechteck) können definiert und im Livebild dargestellt werden. Ziffernwerte zeigen 'Signalfarben' grün oder rot, je nach Konformität.

Intelligente und intuitive Software mit Prozessablaufsteuerung

Ein Software-Modul bietet Schnittstellen wie RS232, USB 3.0, TCP-IP. Es erlaubt direkten Zugriff auf die Datenerfassung zur Anbindung an eigene Laborumgebung. Fertigungsnahe Applikationen nutzen Apps mit Prozessabläufen.

Bild: Intuitive Software mit Touch-Bedienung

Technische Daten

				100.00	440.0		222.45
Brennweite - F-No.	30-4,8	50-4,8	80-6,8	100-6,8	140-8	200-10	300-15
Anzahl Messachsen Winkel/ Position	2/2	2/2	2/2	2/2	2/2	2/2	2/2
Messbereich Winkel 2w1/ °	11°	6,5°	3,8°	3,0°	2,2°	1,5°	1,0°
Auflösung (empfohlen) ²⁾ / wsec	0,1"	0,05"	0,01"	0,01"	0,01"	0,01"	0,005"
Reproduzierbarkeit Rw ²⁾ / wsec	0,1"	0,06"	0,03"	0,03"	0,02"	0,01"	0,007"
Messbereich Position 2x1)/ mm	20+100/m	20+70/m	20+60/m	20+50/m	20+40/m	20+30/m	20+20/m
Auflösung Pos. (empfohlen) ^{2,3)} / μm	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Reproduzierbarkeit Rx ^{2,3)} / μm	0,4+5/m	0,4+2,5/m	0,4+1,5/m	0,4+1,5/m	0,4+1/m	0,4+0,6/m	0,2+0,2/m
freie Öffnung	7,3	9,6	13	15	20	20	20
min. Ø des Spiegels ³⁾ / mm	27,5	30	33	34	37	40	40
min. Ø des Reflektors / mm	8	10	13	16	21	21	21
Gewicht AK-Sensor/kg	0,7	0,7	0,7	0,7	0,8	0,9	1
Abmessungen AK-Sensor	Ø 40 f8; 107 x 62 x 110 mm³						
Schnittstellen/ Protokoll	USB 3.0, TCP-IP / JSON						
Lieferumfang	ELWIMAT-Sensor, Sensorkabel, Software ELWISOFT-Base						
Genauigkeit, Linearität	< 1 % des Messwertes + 2R						
Best. Nr.	802 100	802 10C	802 10A	802 10B	802 103	802 104	802 105
Lieferumfang	ELWIMAT-Sensor, Sensorkabel, rugged Touch-Modul mit integrierter Mapping Datei						
Genauigkeit, Linearität 4)	< 0,1 % des Messwertes + 2R						
Best. Nr.	802 300	802 30C	802 30A	802 30B	802 303	802 304	802 305

¹⁾ X-Richtung, Y-Richtung = 0,75*X, Arbeitsabstand s > 3 f' 2) mit Software ELWISOFT-Base 3) Arbeitsabstand s = 3 f' 4) mit Kompensation (Mapping-Datei)

ELWIMAT-VFS4000 Stand: Mai 2024