

Der neue Standard in der Asphären- und Kitt-Technologie

Zentriermessgerät SCM und ACM

Fertigungstechnik Optik – Messen und Prüfen

Speziell für Produktionsumgebung

Warum das neue ACM?

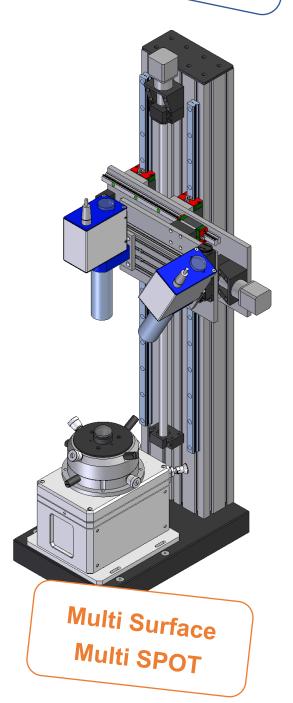

- Absolute Weltneuheit mit V-SPOT Technologie
- Großer Arbeitsabstand, Schärfentiefe und Messbereich
- Gleichzeitig mehrere Flächen messen kurze Messzeit
- Hohe Genauigkeit auch in Fertigungsumgebung
- Skalierbares System mit zusätzlichem Zubehör
- Intuitive Touch-Software ELWISOFT

Abb: Zentriersoftware-Modul auch für Multi-Lens-Applikation.

Einsatzgebiete

- Zentriermessung an Sphären und Asphären
- Kittprozesse und Linsenmontage
- Blocken von Halbzeugen auf Dorn (Asphären)
- Zentriermessung opto-mechanischer Baugruppen
- Radienmessung an kleinen Radien bis 1000 mm
- Radienmessung an großen Radien > 1000 mm
- Radien- und Keilwinkelmessung an Zylinderlinsen
- Messwertüberwachung und –Dokumentation

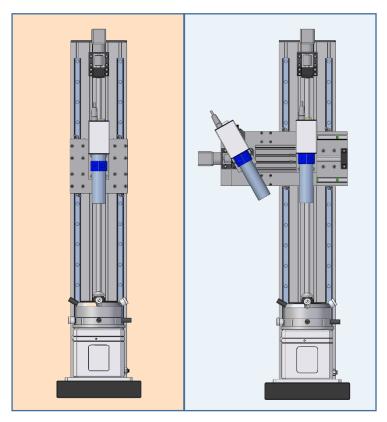
OPTIK · MESS- UND PRÜFTECHNIK VERTRIEB · BERATUNG · TRAINING

Ein Messkonzept – zwei Messmittel – vier Messprozesse

Das Konzept des Messgerätes erlaubt eine einfache Konfiguration für sphärische Prüflinge und eine komplexere für asphärische Prüflinge.

Das Sphären-Zentriermessgerät **SCM** ist vor allem für **sphärische Linsenflächen** konzipiert und besteht aus einer motorischen Z-Achse mit einem ELWIMAT-AKF zur automatischen Antastung und Fokussierung realer und virtueller Konfokalpositionen unterschiedlicher Flächen einer Linse oder eines Linsensystems.

SCM und ACM Prozesse						
MS Multi Surface	2SS Two Step - Single	2SD Two Step - Double	HRSS High Resolution Surface Scan			
 Für sphärische Linsen n Flächen bzw. Linsen Messung optische Achse Messung mechan. Achse Geometrisches Modell zur Auswahl der Bezüge 	 Einseitige Asphäre Messung optische Achse Messung mechan. Achse Messung Asphärenachse Geometrisches Modell zur Auswahl der Bezüge 	 Doppelseitige Asphäre Messung beide Seiten ohne Linse zu flippen Messung optische Achse Messung mechan. Achse Geometrisches Modell zur Auswahl der Bezüge 	 Detaillierter Oberflächenscan Messung mittelfrequenter Fehler MSFE Spektralanalyse MSFE Bestimmung der asphärischen Achse 			

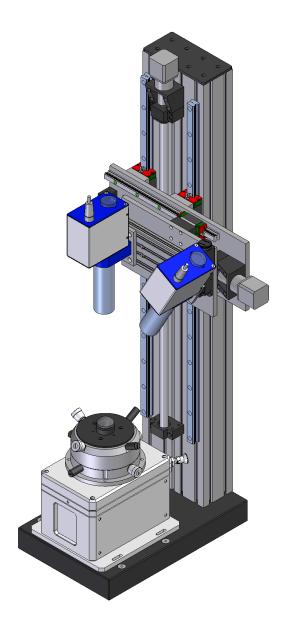

Das Asphären-Zentriergerät **ACM** hat eine weitere Linearachse und eine zusätzliche rotatorische A-Achse. Sie trägt zusätzlich einen ELWIMAT-VFS, mit dem die **asphärischen Anteile** an Linsen gemessen und ausgewertet werden. Der Slope error im Sekundenbereich kann direkt mit hoher Auflösung gemessen werden, genauso wie der lokale und

globale Zentrierfehler. Die Redundanz meridionaler und sagittaler Messwerte führt zu einer sehr hohen Plausibilität und Messgenauigkeit. Sie lässt außerdem sekundäre Fehler der Asphäre wie den "Knick in der Optik" erkennen.

Software und Messprozesse

Die Software beinhaltet aktuell bis zu 4

Applikationen, die in Abhängigkeit der Hardware jederzeit konfiguriert werden können. Das "Multi Surface Modul' MS ist das Basismodul für sphärische Linsen. Es ist einsetzbar für Einzellinsen als auch für optische Systeme mit bis zu 20 Linsen und mehr. "Two Step Single" 2SS wird verwendet für einseitige Asphären, also Plan-Asphäre und Sphäre-Asphäre. Mit dem "Two Step Double" 2SD können doppelseitige Asphären durch eine Seite hindurch auf die Rückseite gemessen und auf Zentrierfehler ausgewertet werden. Mit dem High Resolution Surface Scan HRSS kann eine Asphärenfläche hochaufgelöst gescannt und die Oberfläche rekonstruiert werden. Vor allem die MSFE-Fehleranalyse über Fourieranteile lässt rechtzeitig Fehler beim Schleifprozess erkennen.



OPTIK · MESS- UND PRÜFTECHNIK VERTRIEB · BERATUNG · TRAINING

Übersicht über mögliche Bestandteile der Varianten

Pos						
Nr.	Anz	Titel	Art.Nr.	Info	Zusatzinfo	
1	1	Stativplatte Granit	H-072-380	380 x 260	Dicke = 50	
2	1	Säule Z-Achse	H-072-L 600 mot. H-072-L 800 mot. H-070-L 750 man. H-070-L 750 man.	Hub 500 mm Hub 700 mm 650 mm 900 mm	POS_z 5 μm Pos_φ = 10" -	
3		Drehachse C ww.	Luftlager EK100	7 0,15 μm	⊅ 0,3 wsec	
	1		Drehtisch D 90	7 3 μm	⊅ 5 wsec	
			Reibrad D 100 Reibrad D 200	5 bis 100 mm Durchm. <200	710	
4 1	1	4-Achs Justiertisch	H-072-	Hub	± 2 mm	
	1	± 2 μm/ ± 5 wsec	11-072-	Winkelbereich	± 1°	
5	1	Lagerbock D40	800 077 00d	Durchmesser	40 f7	
ww. 1	1	Linearachse	H-072-X 100	100 mm	5μm	
	1	X-Achse	H-072-X 200	200 mm	10 wsec	
ww.	1	Schwenkachse A-Achse	Standa D60 120 ° HH 100	Pos. < 5 μm Pos. < 0,5 μm	φ < 5 wsec φ < 0,5 wsec	
		A-ACIISE	80 / 40 SG4	1 03. < 0,5 μπ	ψ < 0,5 wsec	
6	1	ELWIMAT-AKF	100/40 SG4 140/40 LG4 200/40 LG4	s. Tabelle hinten	s. Tabelle	
ww.	1	ELWIMAT-VFS	50 / 10 KG4 80 / 10 KG4 100/10 KG4	s. Tabelle hinten	s. Tabelle	
7	1	Objektivrevolver	4x manuell			
8	1	Distanzsensor ww.	PNBC002 10 mm PNBC003 20 mm PNBC004 50 mm	0,15 μm 0,3 μm 0,8 μm	5 μm 10 μm 25 μm	
9	n	Vorsatzobjektive	800 1xx Ø40 x 30 M36 x 0,75	50/ 100 140/ 200 300 / 500 800 / 1000	1300/ 2000 -500/ -800 -1000/-1300 -2000	
10	n	Auflagedorne (Ringkanten)	800 080 xxx	2 bis 60 mm	M8	
ww.	1	Luftaufbereitung		für Luftlager		
12	1	Vakuumpumpe		f. kleine Linsen		

Zubehör für unterschiedliche Anwendungen

- Winkel- / Beam-Konverter 0,25x/ 4x
- ELWIMAT VarioFoc für variable Objektabstände
- Aufnahme mit Reibradantrieb zum schnellen Vermessen und zum Kitten von Achromaten
- V-SPOT Sensor zur Asphärenmessung
- Software zur Berechnung des DoE
- MSFE-Analysesoftware
- Barcode-Scanner
- Fussschalter

Weitere Software Module ELWISOFT

- Keilwinkel R in Reflexion
- Keilwinkel T im Transmission
- Prismenwinkel-Messung neu
- Radien-Messung
- Brennweitenmessung
- Zentrier-Modul MultiSPOT
- Asphären-Zentriermodul

neu

Autofokus-Messmodul

OPTIK · MESS - UND PRÜFTECHNIK VERTRIEB · BERATUNG · TRAINING

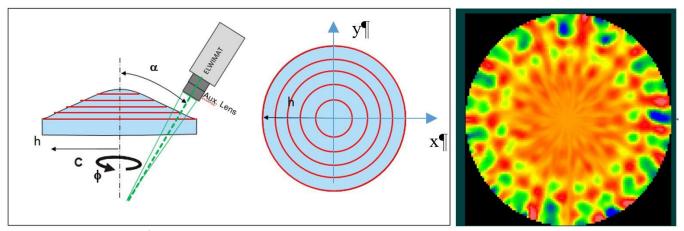
Modulares Konzept

Sowohl das SZM als auch das AZM verfügen über modulare Bausteine bezüglich der Antriebe und Drehachsen.

So kann beispielsweise für fertigungsrelevante Tätigkeiten (Vorprüfung, Endprüfung, Richt- bzw. Feinkitten von

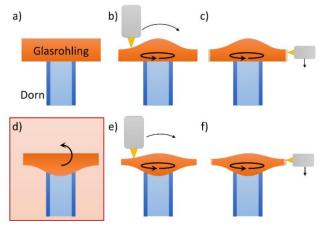
Achromaten und Tripletts, Kitten in Fassung oder auf Dorn) ein **Reibradantrieb** mit Fest- bzw. Kugellageranschlag nach dem V-Schneidenprinzip verwendet werden.

Für Fertigbaugruppen und gefasste Linsensysteme eignen sich die Drehlager mit Antrieben auf Basis von Kugel- oder Luftlagersystemen. Für die weniger anspruchsvollen Zentriergenauigkeiten im Minutengenbereich kann auf ein Präzisions-Luftlager verzichtet werden und ein preiswerter, kugelgelagerter Drehtisch im Genauigkeitsbereich von < 3 μm Laufgenauigkeit und < 5 wsec Kippwinkeltoleranz (Wobble) Verwendung finden. Bei Asphären und hochpräzisen Anforderungen an die Lauftoleranzen (auch bei kleinen Linsen < 10 mm) und kleinen Radien ist das Hochpräzisions-Luftlager mit Laufgenauigkeit im Sub-Mikrometer und Sub-Winkelsekundenbereich empfehlenswert.



Reibradantrieb Kugelgelagert oder Festanschlag	Präzisionsdrehtisch Kugelgelagert	Hochpräzisions- Luftlagerdrehtisch		
Prüflingsdurchmesser 10 bis 100 mm Prüflingsgewicht 10 g bis 10 kg	Prüflings-Durchmesser bis 100 mm Prüflingsgewicht < 15 kg	Prüflings-∅ bis 290 mm Prüflingsgewicht < 50 kg		
Prüflings-∅ > 100 auf Anfrage Messung Randschlag mit © Distanzsensor (s. Tabelle Po		Messung Randschlag mit optischem Distanzsensor		
Rand und untere Linsenfläche als Bezug	Laufgenauigkeit Zentrierung < 3 μm Winkellauftoleranz < 5"	Laufgen. Zentrierung < 0,15 μm Planlaufgenauigkeit < 0,15 μm Winkellauftoleranz < 0,3"		

Sonstige Features


Das SZM und das AZM verfügt mit seiner Steuerung und seinen Auswerteprozeduren über die Möglichkeit mittelfrequente Strukturen MSFE sowohl bereits im feingeschliffenen als auch im anpolierten Zustand zu messen und z. B. charakteristische Speichenstrukturen durch fehlerhafte Schleifprozesse zu erkennen. Die direkte Einflussnahme auf den Prozess ist unmittelbar durchführbar. Auf Anfrage versorgen wir Sie gerne mit InSitu-Messtechnik für den Inlineprozess in ihren Fertigungslinien und Fertigungsmaschinen.

High Resolution Surface Scan HRRS an Sphären und Asphären zur Analyse von Midspatial Frequency Errors MSFE

Kitten auf Dorn

Der Fertigunsprozess bei präzisions-Asphären mit hoher Formgüte ($< 1 \, \mu m$), kleinen Slope Errors (10 wsec) und geringer Dezentrierung ($< 0.5 \, wmin$) läuft in der Regel über den Prozess des Kittens auf (HD-)Dorn. Vor allem beim Prozessschritt des Umkittens (d) ist die Problematik äußerst kritisch, da hier der innere Zentrierfehler entsteht, der sich aus insgesamt 5 Fehlereinfüssen zusammensetzt: axiale und radiale Lauftoleranzen des Dorns, Keilfehler bei Verwendung von Purple Tape oder Schutzlack, Formabweichung und Rauheit des Linsenrandzylinders, Meßuhrauflösung sowie thermische Einflüsse auf den HD-Dorn (Bananeneffekt). Letztendlich ist die Genauigkeit der Lager in den Schleif und Poliermaschinen der nicht zu verhindernde Restfehler beim Kitten auf Dorn.

Prozessablauf bei der Asphärenherstellung: a) aufblocken b) Schleifen und polieren c) Randzentrieren d) Umkitten e) schleifen und polieren f) Randzentrieren

Mit unseren speziellen zum Patent angemeldeten Mess- und Verfahrensprozessen unterstützen wir Sie bei der Herstellung Ihrer nahezu perfekten Asphäre, ob einfach oder doppel-asphärisch. Wir freuen uns auf ihre Anfrage.

OPTIK · MESS- UND PRÜFTECHNIK VERTRIEB · BERATUNG · TRAINING

Technische Daten für AKF-Messköpfe zur Auswahl

Brennweite/ Durchmesser	50/40	80/40	100/40	140/40	200/40	300/40
Anzahl Messachsen	2	2	2	2	2	2
Messbereich MB max. 2w* /°	4,0°	2,25°	2,0°	1,25°	0,9°	0,6°
Max. Arbeitsabstand f. max. MB	70 mm	350 mm	400 mm	640 mm	900 mm	1300 mm
Pixel-Auflösung** / "	7,2"	4,5"	3,6"	2,5"	1,8"	1,2"
Auflösung (empfohlen)*** / "	0,5"	0,2"	0,2"	0,2"	0,1"	0,1"
Reproduzierbarkeit R*** / "	0,5"	0,3"	0,25"	0,2"	0,15"	0,1"
Wellenlänge LED ww. λ / nm	B = 480 / G = 530 / R = 630 / IR = 880					
freie Öffnung / mm	12	28	28	28	28	28
min. Reflektor Ø/mm Refl. > 60%	1	2	2,5	3	4	6
min. Reflektor Ø/mm Refl. = 4 %	4	8	10	12	16	24
Gewicht AK-Sensor/ kg	0,7	0,7	0,7	0,8	0,9	1
Abmessungen AK-Sensor	Ø 40 f8; 107 x 62 x 110 mm³					
Schnittstelle	USB 3.0					
Lieferumfang	Standard-AKF-Sensor, Sensor-Kabel, Treiber, Software (Option: Mapping)					
Genauigkeit, Linearität	< 1 % des Messwertes + 2R / < 0,05 % des Messwertes + 2R (mit Mapping)					
Best. Nr.	801 10C Sλ4	801 10Α Sλ4	801 10Β Sλ4	801 103 Sλ4	801 104 Sλ4	801 105 Sλ4
Lieferumfang	AKF-Sensor als Low Light Version, Kabel, Treiber, Software (Option: Mapping)					
Min. Reflektor Ø/ mm Refl. = 0,4%	6	12	15	18	22	28
Bestellnummer-Zusatz	801 10C Lλ4	801 10Α Lλ4	801 10Β Lλ4	801 103 Lλ4	801 104 Lλ4	801 105 Lλ4
Lieferumfang	AKF-Sensor, Sensor-Kabel, rugged Touch-Modul-PC mit integrierter Mapping-Datei					
Genauigkeit, Linearität / wsec	2,5	1,5	1,3	1	0,7	0,6
Best. Nr.	801 30C	801 30A	801 30B	801 303	801 304	801 305
Lieferumfang	ELWIMAT-AKF VarioFoc, Sensor-Kabel, Controller mit Kabel, Steuersoftware					
Arbeitsabstand/ Konfokalpunkt symmetrisch	± 325mm	± 985mm	± 1,5 m	± 3,0 m	± 6,2 m	± 13,9 m
Best. Nr.	806 10C Χλ4	806 10Α Χλ4	806 10B Xλ4	806 103 Χλ4	806 104 Χλ4	806 105 Χλ4
Arbeitsabstand / Konfokalpunkt asymmetrisch konverg. / div.****	162 mm	490 mm	770 mm	1,5 m	3 m	7,5 m
Best. Nr.	806 201 Χλ4	806 20A Xλ4	806 20B Xλ4	806 203 Xλ4	806 204 Χλ4	806 205 Χλ4

^{*} Angabe Messbereich in X-Richtung des rechteckigen Sensors, Y-Richtung = 0,75*X, abhängig vom Arbeitsabstand

Als weiteres Zubehör erhältlich:

Beam-Expander bzw. Winkel-Expander 4x mit Mapping: Messbereich ± 10.000" mit Abweichung < 5 wsec

Stand: Juni. 2024

^{**} mit mitgeliefertem Treiber bzw. mit Auswertesoftware und Pixelauflösung

^{***} einfache Standardabweichung der Abweichung vom Sollwert mit Subpixelauswertung mit ELWISOFT-Base

^{****} Fokuspunkte sind virtuell oder real ab Werk einstellbar; nach Vorgabe des Kunden.